
 

Skew plasticising component normal I distribution 
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Abstract. This article has two goals. The first (main) goal is to introduce a new flexible distribution defined 

on an infinite domain (−∞,∞). This distribution has been named the skew plasticising component normal 

distribution. The second (additional) goal is to present a chronological overview of distributions belonging to 

the large family of normal plasticising distributions. Some properties of the proposed distribution such as the 

PDF, CDF, quantiles, generator, moments, skewness, kurtosis and moments of order statistics are 

presented. The unknown parameters of the new distribution are estimated by means of the maximum 

likelihood method. The Shannon entropy, the Hessian Matrix and the Fisher Information Matrix are also 

presented. The study provides illustrative examples of the applicability and flexibility of the introduced 

distribution. The most important R codes are provided in Appendix 2. 
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1. Introduction 

 

The Gaussian distribution should be classified as a normal distribution (ND) due to the regularity 

and clarity of the roles of its parameters and its unique mathematical properties. However, it appears 

that its enormous popularity is disproportionate to its real applications. In many practical cases, 

empirical data exhibit skewness, heavy tails or multimodality that cannot be captured by the 

classical ND. The ND then needs to be plasticised. 

As shown in numerous studies, various approaches have been developed to plasticise the ND, 

forming a broad family of normal plasticised distributions. 

The relevant literature shows that there are various methods of plasticising the ND, forming a 

family of normal plasticising distributions. 

The first group of normal plasticising distributions is a mixture of distributions, i.e. a mixture of 

a plasticising component and an ND. A mixture distribution, which is a combination of at least two 

distributions, can fit more characteristics than sample data might contain. Owing to this property, 

mixture distributions have been widely used in statistical sciences (Frühwirth-Schnatter, 2006; 
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Martínez-Flórez et al., 2022). Behboodian (1970) presents a procedure for determining whether a 

mixture of two NDs (also called the compound normal (CN) distribution) is unimodal or not. 

Stephens (2000) studied what is called the ‘label switching’ problem, caused by the symmetry in 

the likelihood of the model parameters. A common response to this problem is to remove the 

symmetry by using artificial identifiability constraints. Lin et al. (2007) used a mixture of skew 

distribution models to fit multimodal data and datasets with bimodal features. Magnus and Magnus 

(2019) considered a subclass of the mixture models, namely normal latent factor mixture models. 

Popović et al. (2017) proposed the extended mixture ND, based on a linear mixture model, whose 

Probability Density Function (PDF) is symmetrical. Wang and Song (2017) developed a new 

equivalent linearisation method for nonlinear random vibration analysis. The method employs a 

Gaussian mixture distribution model to approximate the probabilistic distribution of a nonlinear 

system response. Sulewski (2022b) defined an ND with a plasticising component (NDPC). 

The second group is a family of distributions with a plasticising formula located in the exponential 

function of the ND. This family includes e.g. the lognormal (Gaddum, 1945; Kapteyn, 1916), SL, 

SB, SU (Johnson, 1949), Birnbaum–Saunders (Athayde et al., 2012; Birnbaum & Saunders, 1969; 

Sulewski & Stoltmann, 2023), inverse Gaussian (Chhikara & Folks, 1977), sinh-normal (Rieck & 

Nedelman, 1991), DS normal (Sulewski, 2021), the Sulewski Plasticizing Component (Sulewski & 

Volodin, 2022), SC and SD (Sulewski, 2023) distributions. 

The third group is a two-piece family of distributions. The PDFs of these distributions are in Table 

A1 (see Appendix 1). The family of distributions includes: the two-piece skew-normal (TPSN, Kim, 

2005), generalised skew-normal (GSN1, Gómez et al., 2006), extended epsilon skew-normal 

(EESN, Salinas et al., 2007), epsilon skew normal (ESN, Mudholkar & Hutson, 2000), flexible 

epsilon-skew-normal (FESN, Arellano-Valle et al., 2010), skew-two-piece skew-normal (STPSN, 

Jamalizadeh & Arabpour, 2011), generalised two-piece skew-normal (GTPSN, Jamalizadeh & 

Arabpour, 2011), generalised skew-two-piece skew-normal (GSTPSN, Jamalizadeh & Arabpour, 

2011), generalised two-piece skew-normal (GTPSN, Kumar & Anusree, 2013), two-piece power 

normal (TPPN, Sulewski, 2021) distributions. 

The fourth group is a family of distributions with PDF 𝑓(𝑥; 𝜽)𝜙(𝑥), where the 𝑓(𝑥; 𝜽) is some 

function with parameter vector 𝜽 and 𝜙(𝑥) is a PDF of 𝑁(0,1). The PDFs of these distributions are 

presented in Table A1 in Appendix 1. The family of distributions includes the symmetric bimodal 

normal (BN, Arellano-Valle & Azzalini, 2008), alpha-skew-normal (ASN, Elal-Olivero, 2010), 

double normal (DN, Alavi, 2012), generalised alpha-skew-normal (GASN, Handam, 2012), 

Balakrishnan alpha-skew-normal (BASN, Hazarika et al., 2020), two-piece normal (TN, Salinas et 

al., 2023), alpha-beta skew-normal (ABSN, Shafiei et al., 2016), Balakrishnan alpha-beta-skew-



   

 

normal (BABSN, Shah et al., 2021) and flexible alpha normal (FAN, Martínez-Flórez et al., 2022) 

distributions. 

The fifth group is a family of distributions with PDF 𝑓(𝑥; 𝜽)𝑒𝑥𝑝(−|𝑥|γ/γ) (γ > 0). The PDFs 

of these distributions are provided in Table A1 in Appendix 1. The family of distributions includes 

the generalised normal (GN, Kumar & Anusree, 2015), bimodal generalised normal (BGN, 

Mahmoudi et al., 2019) and alpha-skew generalised normal (ASGN, Mahmoudi et al., 2019) 

distributions. 

The sixth group is a power normal family of distributions. The PDFs of these distributions are 

available in Table A1 in Appendix 1. The family of distributions includes the power normal (PN, 

Gupta & Gupta, 2008), generalised power-normal (GPN, Arnold et al., 2002), Durrans’s power 

normal (Durrans, 1992) and power skew asymmetric normal (PSAN, Martínez-Flórez et al., 2014) 

distributions. 

The seventh group is the Azzalini family of distributions. Azzalini (1985) added a skewness 

parameter to the Cumulative Distribution Function (CDF) of the ND and defined the skew-normal 

(SN) distribution with the following PDF: 

 

𝑓𝑆𝑁(𝑥; λ) = 2𝜙(𝑥)Φ(λx) (λ ∈ 𝑅),     (1) 

 

where 𝜙 and Φ are the PDF and CDF of 𝑁(0,1), respectively. 

This distribution and its variations have been discussed by several authors including Azzalini 

(1985; 1986), Henze (1986), Azzalini & Dalla Valle (1996), Branco & Dey (2001), Loperfido 

(2001), Arnold et al. (2002) and Azzalini and Chiogna (2004). The PDFs of the Azzalini family of 

distributions are shown in Table A1 in Appendix 1. This family includes the skewed normal (SN1, 

Arnold et al., 2002), skew-curved normal (SCN, Arellano-Valle et al., 2004), skew-generalised 

normal (SGN, Arellano-Valle et al., 2004), flexible generalised skew-normal of order 3 (FGSN3, 

Ma & Genton, 2004), Balakrishnan skew–normal (BSN, Sharafi & Behboodian, 2008), generalised 

skew-normal (Gupta & Gupta, 2004), generalised skew-normal (GSN2, Jamalizadeh & 

Balakrishnan, 2008), two-parameter Balakrishnan skew-normal (TPBSN, Bahrami et al., 2009), 

generalised skew-normal (GSN, Jamalizadeh & Balakrishnan, 2008), skew bimodal normal (SBN) 

(Elal-Olivero et al., 2009), skew-flexible normal (SFN, Gómez et al., 2011), extended skew 

generalised normal I (ESGN1, Choudhury & Matin, 2011), extended skew generalised normal II 

(ESGN2, Choudhury & Matin, 2011), generalised mixture of standard normal and skew-normal 

(GMNSN, Kumar & Anusree, (2011), normal-skew-normal (NSN, Gómez et al., 2013), flexible 

skew-generalised normal (FSGN, Bahrami & Qasemi, 2015), flexible skew-curved normal (FSCN, 

Bahrami & Qasemi, 2015), extended skew generalised normal III (ESGN3, Kumar & Anusree, 



   

 

2015), shape-skew-generalised normal (SSGN, Rasekhi et al., 2017), skew-bimodal normal-normal 

(SBNN, Alavi & Tarhani, 2017), extended skew-normal (ESN, Seijas-Macias et al., 2017), 

generalised alpha-beta skew-normal (GABSN, Shah et al., 2023) and flexible alpha-skew-normal 

(FASN, Das et al., 2023) distributions. 

Despite this extensive literature, many existing plasticising models are either computationally 

demanding, lacking interpretability or they fail to simultaneously model skewness and bimodality 

in a parsimonious way. Motivated by these limitations, we introduce a new member of the normal 

plasticised distributions family, namely the skew plasticising component normal (SPCN1) 

distribution. This model provides a simple yet flexible way to generate a wide range of unimodal 

and bimodal shapes while preserving a clear probabilistic interpretation of its parameters. 

The SPCN1 distribution extends the idea of a compound normal model by introducing a skew 

plasticising component that modifies both tails and the central concentration of the ND. The 

proposed formulation enables continuous control over skewness and kurtosis and allows the model 

to adapt to empirical data exhibiting asymmetric or bimodal behaviour. Furthermore, its analytical 

tractability makes it suitable for estimation via maximum likelihood and for use in simulation and 

goodness-of-fit studies. 

This article has two goals. The first (main) goal is to introduce the SPCN1 distribution defined 

on an infinite domain (−∞,∞). The second (additional) goal is to provide a chronological overview 

of distributions belonging to the large family of normal plasticising distributions. 

This paper is organised as follows. Section 2 presents the properties of the SPCN1 distribution 

such as the PDF, CDF, quantiles, generator, moments, skewness, kurtosis and moments of order 

statistics. The Shannon entropy is presented in Section 3, while the Hessian Matrix and the Fisher 

Information Matrix are presented in Section 4. The maximum likelihood estimation is discussed in 

Section 5, while illustrative examples of the applicability and flexibility of the proposed distribution 

are presented in Section 6. The conclusions are presented in Section 7. The most important R codes 

are provided in Appendix 2. The PDFs of the large family of normal plasticising distributions are 

given in Table 1. 

 

2. Properties of the proposed distribution 

 

2.1. The probability density function 

 

The PDF and CDF of the plasticising component (PC) are given (Sulewski, 2022b) by 

 

𝑓𝑃𝐶(𝑥; 𝑐) =
𝑐

√2𝜋
|𝑥|𝑐−1𝑒𝑥𝑝 [−

1

2
|𝑥|2𝑐] = 𝑐|𝑥|𝑐−1𝜙(|𝑥|𝑐),   (2) 



   

 

 

𝐹𝑃𝐶(𝑥; 𝑐) = Φ[𝑠𝑔𝑛(𝑥)|𝑥|𝑐],     (3) 

 

where 𝑐 ≥ 1 is the shape parameter, and 𝜙 and Φ are the PDF and CDF of 𝑁(0,1), respectively. 

Definition 1. (the Azzalini transformation) The distribution of random variable 𝑋 with the PDF 

given by 

 

𝑓(𝑥; 𝑐, 𝑑) = 2𝑓𝑃𝐶(𝑥; 𝑐)𝐹𝑃𝐶(𝑥𝑑; 𝑐) = 2𝑐|𝑥|
𝑐−1𝜙(|𝑥|𝑐)Φ[𝑠𝑔𝑛(𝑥𝑑)|𝑥𝑑|𝑐]  (4) 

 

or 

 

𝑓(𝑥; 𝑐, 𝑑) =
𝑐|𝑥|𝑐−1𝑒𝑥𝑝[−0.5|𝑥|2𝑐]

√2𝜋
{1 + 𝑒𝑟𝑓 [

|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
]}, 

 

or 

 

𝑓(𝑥; 𝑐, 𝑑) =
𝑐|𝑥|𝑐−1𝑒𝑥𝑝[−0.5|𝑥|2𝑐]

√2𝜋
𝑒𝑟𝑓𝑐 [

−|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
], 

 

or 

 

𝑓(𝑥; 𝑐, 𝑑) =
𝑐

√2𝜋

{
 
 

 
 𝑥𝑐−1𝑒𝑥𝑝[−0.5𝑥2𝑐]𝑒𝑟𝑓𝑐 [

−(𝑥𝑑)𝑐

√2
] , 𝑥 ≥ 0

(−𝑥)𝑐−1𝑒𝑥𝑝[−0.5(−𝑥)2𝑐]𝑒𝑟𝑓𝑐 [
(−𝑥𝑑)𝑐

√2
] , 𝑥 < 0

 

 

is called the skew plasticising component normal I (SPCN1) distribution, where 𝑐 ≥ 1 is the shape 

parameter, 𝑑 ≥ 0 is the skewness parameter, 𝑒𝑟𝑓(. ) is the error function and 𝑒𝑟𝑓𝑐(. ) is the 

complementary error function. For 𝑐 = 1, 𝑑 = 0, we obtain the 𝑁(0,1) and for 𝑑 = 0, we obtain the 

PC (2). The symbol ‘I’ denotes the authors' first proposal for the skew plasticising component 

normal (SPCN) distribution. The R codes of the dSPCN1 function are presented in Appendix 2. 

Figure 1 shows the PDF of the SPCN1(c, d) for some values of the parameters. If 𝑐 > 1, the PDF 

has two modes of various heights. 

The 𝑆𝑃CN1(c, d) can be used to deviate from the 𝑁(0,1). The similarity measure between our 

proposal and the 𝑁(0,1) was provided by Sulewski (2022a): 

 



   

 

𝑀(𝑐, 𝑑) = ∫ 𝑚𝑖𝑛[𝑓(𝑥; 𝑐, 𝑑), 𝜙(𝑥)]𝑑𝑥
∞

−∞
.   (5) 

 

Figure 1. The PDF of the SPCN1(c, d) for selected values of the parameters 

 
Source: authors’ work. 
 

As mentioned before, the 𝑆𝑃CN1(1,0) is the 𝑁(0,1), so 𝑀𝑚𝑎𝑥(1,0) = 1. 

In addition to similarity measure 𝑀, the difference between the distributions can also be quantified 

using the Kullback–Leibler (𝐾𝐿) divergence. For two PDFs, 𝑝 and 𝑞, the 𝐾𝐿 divergence is defined 

as (Kullback & Leibler, 1951) 

 

𝐾𝐿(𝑝, 𝑞) = ∫ 𝑝(𝑥; 𝛉𝒑)𝑙𝑜𝑔2
𝑝(𝑥;𝛉𝒑)

𝑞(𝑥;𝛉𝒒)
𝑑𝑥

∞

−∞
,    (6) 

 

where 𝛉𝒑 is the parameter vector of function 𝑝(𝑥), 𝛉𝒒 is the parameter vector of function 𝑞(𝑥). 𝐾𝐿 

takes the values of (0,∞). 

In our context, the 𝐾𝐿 is given by 

 

𝐾𝐿(𝑓, 𝜙) = ∫ 𝑓(𝑥; 𝑐, 𝑑)𝑙𝑜𝑔2
𝑓(𝑥;𝑐,𝑑)

𝜙(𝑥)
𝑑𝑥

∞

−∞
. 

 

Tables 1 and 2 summarise similarity measure 𝑀 and the complement of the Kullback–Leibler 

divergence 1 − 𝐾𝐿 between the 𝑆𝑃𝐶𝑁1 distribution and standard ND 𝑁(0,1). The 𝐾𝐿 measure has 

been written as 1 − 𝐾𝐿 to make it easier to compare with the 𝑀 similarity measure. 

In both cases, as parameters 𝑐 and 𝑑 depart from their reference values (𝑐 = 1 and 𝑑 = 0), 

similarity measure 𝑀 decreases, indicating a gradual divergence from the ND. 

The values of 1 − 𝐾𝐿 show a consistent trend with 𝑀: as 𝑑 or 𝑐 increases, divergence 𝐾𝐿 between 

𝑆𝑃𝐶𝑁1 and 𝑁(0,1) grows. For small deviations of 𝑐 and 𝑑, both measures suggest a strong 

resemblance. For larger parameter values, the 𝑆𝑃𝐶𝑁1 distribution becomes increasingly non-

normal, as evidenced by the steep decline of both measures. 



   

 

In particular, Table 1 illustrates that skewness parameter 𝑑 has a strong influence on similarity: 

even moderate departures from 𝑑 = 0 lead to a noticeable drop in both 𝑀 and 1 − 𝐾𝐿. Table 2 

shows a similar, but slightly smoother effect for shape parameter 𝑐. 

Overall, both measures (𝑀 and 𝐾𝐿) provide consistent quantitative evidence that 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) 

continuously and controllably deviates from 𝑁(0,1), confirming its flexibility and interpretability 

as a ‘plasticized’ version of the ND. 

 

Table 1. Similarity measure 𝑀(1, 𝑑) and 𝐾𝐿(1, 𝑑) between the 𝑆𝑃CN1(1, 𝑑) and 𝑁(0,1) 
𝑑 0 0.158 0.325 0.51 0.727 1 1.376 1.963 3.078 6.314 29.82 

𝑀(1, 𝑑) 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 
1 − 𝐾𝐿(1, 𝑑) 1 0.989 0.955 0.898 0.82 0.721 0.603 0.468 0.32 0.162 0.035 

Source: authors’ work. 
 
Table 2. Similarity measure 𝑀(𝑐, 0) and 𝐾𝐿(𝑐, 0) between the 𝑆𝑃CN1(c, 0) and 𝑁(0,1) 

𝑐 1 1.118 1.253 1.404 1.576 1.775 2.005 2.278 2.602 2.991 3.469 

𝑀(𝑐, 0) 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 
1 − 𝐾𝐿(𝑐, 0) 1 0.985 0.945 0.885 0.807 0.712 0.602 0.474 0.331 0.172 −0.006 

Source: authors’ work. 
 
 

2.2. Cumulative density function 

 

Let 𝑋~SPCN1(𝑐, 𝑑). The CDF of the SPCN1 distribution, based on definition 1, is given by the 

following formula: 

 

𝐹(𝑥; 𝑐, 𝑑) = 2𝑐 ∫ |𝑡|𝑐−1𝜙(|𝑡|𝑐)Φ[𝑠𝑔𝑛(𝑡𝑑)|𝑡𝑑|𝑐]𝑑𝑡
𝑥

−∞
.   (7) 

 

For 𝑥 < 0, formula (7) can be written as 

 

𝐹(𝑥; 𝑐, 𝑑) =
𝑐

√2𝜋
∫

(−𝑡)𝑐−1

𝑒0.5(−𝑡)
2𝑐 𝑒𝑟𝑓𝑐 [

(−𝑡𝑑)𝑐

√2
] 𝑑𝑡

𝑥

−∞

 

 

and for 𝑥 ≥ 0, we have 

 

𝐹(𝑥; 𝑐, 𝑑) =
𝑐

√2𝜋
{∫

(−𝑡)𝑐−1

𝑒0.5(−𝑡)
2𝑐 𝑒𝑟𝑓𝑐 [

(−𝑡𝑑)𝑐

√2
]𝑑𝑡

0

−∞

+∫
𝑡𝑐−1

𝑒0.5𝑡
2𝑐 𝑒𝑟𝑓𝑐 [

−(𝑡𝑑)𝑐

√2
] 𝑑𝑡

𝑥

0

}. 

 

The R codes of the pSPCN1 function are presented in Appendix 2. 

Figure 2 shows the CDF of the SPCN1(c, d) for some parameter values. For 𝑐 > 1, we obtain 

two sub-CDFs placed at certain levels, which means the distribution is bimodal. 

Figure 2. The CDF of the SPCN1(c, d) for some values of the parameters 



   

 

 
Source: authors’ work. 
 

It is quite understandable that the CDF does not have a closed form, since the distribution in 

question has its origin in the Gaussian distribution. A similar situation, as can be seen below, 

concerns quantiles, the pseudo-random number generator, non-central moments, moments of order 

statistics, and the Shannon entropy. However, this is not a problem from the perspective of practical 

applications, because thanks to numerical methods, we obtain user functions written, for example 

in the R environment (see Appendix 2). 

 

2.3. Quantile and pseudo-random number generator 

 

Let 𝑋~SPCN1(𝑐, 𝑑). The p-th (0 < 𝑝 < 1) quantile 𝑥𝑝 is a solution to equation 

 

𝑐

√2𝜋
∫

|𝑥|𝑐−1

𝑒0.5|𝑥|
2𝑐 𝑒𝑟𝑓𝑐 [

−|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
] 𝑑𝑥 − 𝑝 = 0

𝑥𝑝

−∞
.    (8) 

 

The R codes of the qSPCN1 function are presented in Appendix 2. 

Let 𝑋~SPCN1(𝑐, 𝑑) and 𝑅~𝑈𝑛𝑖𝑓(0,1). The pseudo-random number generator of 𝑋 is a solution to 

equation 

 

𝑐

√2𝜋
∫

|𝑥|𝑐−1

𝑒0.5|𝑥|
2𝑐 𝑒𝑟𝑓𝑐 [

−|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
] − 𝑅 = 0

𝑋

−∞
.    (9) 

 

The R codes of the rSPCN1 function are presented in Appendix 2. 

 

2.4. Moments 

 

Let 𝑋~SPCN1(𝑐, 𝑑). Non-central moments of 𝑋 are given by 

 

𝛼𝑘(𝑐, 𝑑) = 𝐸(𝑋𝑘) =
𝑐

√2𝜋
∫

|𝑥|𝑐−1

𝑒0.5|𝑥|
2𝑐 𝑒𝑟𝑓𝑐 [

−|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
] 𝑑𝑥

∞

−∞
 (𝑘 = 1,2, … ).  (10) 



   

 

 

The R codes of the mSPCN1 function are presented in Appendix 2. 

 

2.5. Skewness and kurtosis 

 

Based on the order (non-central) moments and using their relationships with central moments 𝜇𝑘 =

∑ (−1)𝑖 (
𝑘
𝑖
) 𝛼𝑘−𝑖𝛼1

𝑖𝑘
𝑖=0 , we can easily calculate skewness 𝛾1 and kurtosis 𝛾2 of the 𝑆𝑃𝐶𝑁1(𝑐, 𝑑). 

The skewness of SPCN1(𝑐, 𝑑) is defined as 

 

𝛾1(𝑐, 𝑑) =
𝜇3

𝜇2
1.5 =

𝛼3−3𝛼1𝛼2+2𝛼1
3

(𝛼2−𝛼1
2)
1.5 , 

 

where 𝛼𝑖  (𝑖 = 1,2,3) are given by (10). The R codes of the g1SPCN1 function are presented in 

Appendix 2. 

Figure 3 shows 𝛾1 as a function of 𝑐 for selected 𝑑 values (left) and 𝛾1 as a function of 𝑑 for 

selected 𝑐 values (right). 𝛾1(𝑐) is a decreasing function for 𝑑 ≥ 1, especially for the initial values 

of the arguments and inversely unimodal for 0 < 𝑑 < 1, e.g. 𝛾1
𝑚𝑖𝑛(1.713,0.5) = −0.239. As 𝑑 

increases, 𝛾1(𝑐) decreases. 𝛾1(𝑑) is inversely unimodal for 𝑐 ≥ 1 e.g. 𝛾1
𝑚𝑖𝑛(10,1.455) = −6.54. 

The 𝛾1(𝑑) function is strictly monotonical for the initial values of the arguments. 

 

Figure 3. Skewness of 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) 

 
Source: authors’ work. 
 

The kurtosis of SPCN1(𝑐, 𝑑) is given by 

 

𝛾2(𝑐, 𝑑) =
𝜇4

𝜇2
2 =

𝛼4−4𝛼1𝛼3+6𝛼1
2𝛼2−3𝛼1

4

(𝛼2−𝛼1
2)
2 , 

 

where 𝛼𝑖  (𝑖 = 1,2, … ,4) are given by (10). The R codes of the g2SPCN1 function are presented in 

Appendix 2. 



   

 

Figure 4 shows 𝛾2 as a function of 𝑐 for selected 𝑑 values (left) and 𝛾2 as a function of 𝑑 for 

selected 𝑐 values (right). 𝛾2(𝑐) is the unimodal function, e.g. 𝛾2
𝑚𝑎𝑥(7.253,2) = 21.162. As 𝑑 

increases, 𝛾2(𝑐) decreases. 𝛾2(𝑑) is the unimodal function, e.g. 𝛾2
𝑚𝑎𝑥(6,1.716) = 24.87. As 𝑐 

increases, 𝛾2(𝑐) also increases. As Malakhov’s inequality 𝛾2 ≥ 𝛾1
2 +  1 (Malakhov, 1978) 

indicates, we obtain 𝛾2 equal to no less than 1. 

 

Figure 4. Kurtosis of 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) 

 
Source: authors’ work. 
 

We calculate 𝛾1 and 𝛾2 for 105 random values of 𝑐 = 𝑈𝑛𝑖𝑓(1,100) and 𝑑 = 𝑈𝑛𝑖𝑓(0,100). 

Figure 5 presents a set of points (𝛾1, 𝛾2) located in a rectangle (−4.5,4.5) × (1,21.25). The symbol 

MP denotes the 𝛾2 = 𝛾1
2 + 1 Malakhov parabola. We obtain 𝛾1 ∈ (−4.824,0.994), 𝛾2 ∈

 (1,21.244) and a very interesting shape. 

 

Figure 5. Variability range of 𝛾1 and 𝛾2 of 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) 

 
Source: authors’ work. 

 

2.6. Moments of order statistics 

 

Let 𝑋𝑖,𝑛 be the 𝑖-th order statistic (𝑋1,𝑛 ≤ 𝑋2,𝑛 ≤ ⋯ ≤ 𝑋𝑛,𝑛) in a sample of size 𝑛 from the 

SPCN1(𝑐, 𝑑). The 𝑘-th moment of the 𝑖-th order statistic, 𝑋𝑖,𝑛 is defined as 

 

𝛼𝑘,𝑖,𝑛 = 𝐸(X𝑖,𝑛
𝑘 ) = ∫ 𝑥𝑘𝑓𝑖,𝑛(𝑥; 𝑎, 𝑏)𝑑𝑥

∞

−∞
,   (11) 



   

 

 

where 

 

𝑓𝑖,𝑛(𝑥; 𝑐, 𝑑) = 𝑖! (
𝑛
𝑖
)

𝑓(𝑥;𝑐,𝑑)

𝐹(𝑥;𝑎,𝑏)1−𝑖
[1 − 𝐹(𝑥; 𝑎, 𝑏)]𝑛−𝑖   (12) 

 

and 𝑓(𝑥; 𝑎, 𝑏), 𝐹(𝑥; 𝑎, 𝑏) are given by (4) and (7). The R codes of the mOSSPCN1 function are 

presented in Appendix 2. Note that from (12), we have 𝑓2,2(𝑥; 𝑐, 𝑑) = 2𝑓(𝑥; 𝑐, 𝑑)𝐹(𝑥; 𝑎, 𝑏), so we 

obtain the Azzalini transformation without the skewness parameter. 

Figure 6 shows the PDF of the 𝑋5𝑖,30 (𝑖 = 1, 2, 3, 4, 5) of the 𝑆𝑃𝐶𝑁1(2, 0.5) (left) and 

𝑆𝑃𝐶𝑁1(2, 3) (right), as well as 𝛼𝑘,𝑖,𝑛(𝑘 = 1, 2, 3, 4) in brackets, respectively. The 𝑓𝑖,50(𝑥𝑚; 𝑎, 𝑏) 

value is the highest for 𝑖 = 45 (Figure 6, left) and for 𝑖 = 35 (Figure 6, right). The values of 𝛼𝑘=1,𝑖,𝑛 

and 𝛼𝑘=3,𝑖,𝑛 increase along with the 𝑖 value. 

 

Figure 6. PDF of the 𝑋5𝑖,30 (𝑖 = 1,2, … ,5) of the 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) distribution 

 
Source: authors’ work. 

 

3. Shannon entropy 

 

Let 𝑓(𝑥; 𝑐, 𝑑) be the PDF (4). Shannon entropy 𝑆 is given by (Shannon, 1948) 

 

𝑆(𝑐, 𝑑) = −∫ 𝑓(𝑥; 𝑐, 𝑑)𝑙𝑛[𝑓(𝑥; 𝑐, 𝑑)]𝑑𝑥
∞

−∞
,   (13) 

 

where 

 

𝑙𝑛[𝑓(𝑥; 𝑐, 𝑑)] = 𝑛𝑙𝑛
𝑐

√2𝜋
+ (𝑐 − 1)𝑙𝑛|x| − 0.5|𝑥|2𝑐 + 𝑙𝑛 {𝑒𝑟𝑓𝑐 [

−|𝑥𝑑|𝑐𝑠𝑔𝑛(𝑥𝑑)

√2
]}.  (14) 

 

The R codes of the sSPCN1 function are presented in Appendix 2. 



   

 

Figure 7 shows the Shannon entropy as a function of 𝑐 for selected 𝑑 values (left) and as a function 

of 𝑑 for selected 𝑐 values (right). We obtain decreasing functions with a very small numerical range 

of variability. 

 

Figure 7. Shannon entropy of the 𝑆𝑃𝐶𝑁1(𝑐, 𝑑) 

 
Source: authors’ work. 

 
4. Hessian Matrix and Fisher Information Matrix 

 

The Hessian Matrix (HM) and the Fisher Information Matrix (FIM) are critical for optimisation and 

statistical inference. Since the HM is related to the FIM, its singularity (non-invertibility) indicates 

that the log-likelihood function may have flat regions or an insufficient curvature at the given 

parameter values. This lack of curvature can lead to the FIM, which quantifies the precision of 

parameter estimates, being singular or near-singular. 

The FIM quantifies the amount of information that a random variable stores about an unknown 

parameter. Let 𝑓(𝑥; 𝑐, 𝑑) and 𝑙𝑛[𝑓(𝑥; 𝑐, 𝑑)] be given by (4) and (14), respectively. If there are 

suitable partial derivatives of 𝑓(𝑥; 𝑐, 𝑑), then the FIM 𝐼𝑖,𝑗
𝑐,𝑑(𝑖, 𝑗 = 1, 2) is a square 2 × 2 matrix 

defined as 

 

𝐼𝑖,𝑗
𝑐,𝑑 = −[

𝐸 {
𝜕2𝑙𝑛[𝑓(𝑥;𝑐,𝑑)]

𝑑𝑐2
} 𝐸 {

𝜕2𝑙𝑛[𝑓(𝑥;𝑐,𝑑)]

𝜕𝑐𝜕𝑑
}

𝐸 {
𝜕2𝑙𝑛[𝑓(𝑥;𝑐,𝑑)]

𝜕𝑑𝜕𝑐
} 𝐸 {

𝜕2𝑙𝑛[𝑓(𝑥;𝑐,𝑑)]

𝜕𝑑2
}
],   (15) 

 

where 𝐼1,2
𝑐,𝑑 = 𝐼2,1

𝑐𝑑 , obviously. The R codes of the fimSPCN1 function are presented in Appendix 2. 

A non-invertible (singular) HM can lead to the information matrix becoming singular, impacting 

the optimisation process and parameter estimation. If all second-order partial derivatives of 

𝑓(𝑥; 𝑐, 𝑑) exist, then HM 𝐻𝑖,𝑗
𝑐,𝑑(𝑖, 𝑗 = 1, 2) is a square 2 × 2 matrix arranged as 

 



   

 

𝐻𝑖,𝑗
𝑐,𝑑 = [

𝜕2𝑓(𝑥;𝑐,𝑑)

𝜕𝑐2
𝜕2𝑓(𝑥;𝑐,𝑑)

𝜕𝑐𝜕𝑑

𝜕2𝑓(𝑥;𝑐,𝑑)

𝜕𝑑𝜕𝑐

𝜕2𝑓(𝑥;𝑐,𝑑)

𝜕𝑑2

],    (16) 

 

where 𝐻1,2
𝑐,𝑑 = 𝐻2,1

𝑐𝑑 , obviously. The R codes of the hmSPCN1 function are presented in Appendix 2. 

In distribution theory, there are papers with more or less complicated FIM and HM formulas, but 

it is difficult to find a numerical analysis. 

The values of 𝐼𝑖,𝑗
𝑐,𝑑 (𝑖, 𝑗 = 1, 2) for certain parameter values, including those from Figure 1, are: 

𝐼𝑖,𝑗
1,0.2 = [

1.78 −0.15
−0.15 0.61

] , 𝐼𝑖,𝑗
1,0.4 = [

1.79 −0.13
−0.13 0.54

],𝐼𝑖,𝑗
1,0.6 = [

1.78 −0.07
−0.07 0.44

] , 𝐼𝑖,𝑗
1,0.8 = [

1.79 −0.02
−0.02 0.35

], 

𝐼𝑖,𝑗
1.5,0.2 = [

0.78 −0.05
−0.05 0.15

] , 𝐼𝑖,𝑗
1.5,0.4 = [

0.79 −0.10
−0.10 0.53

],𝐼𝑖,𝑗
1.5,0.6 = [

0.79 −0.09
−0.09 0.69

] , 𝐼𝑖,𝑗
1.5,0.8 = [

0.79 −0.03
−0.03 0.70

], 

𝐼𝑖,𝑗
2,0.2 = [

0.43 −0.01
−0.01 0.10

] , 𝐼𝑖,𝑗
2,0.4 = [

0.44 −0.06
−0.06 0.40

],𝐼𝑖,𝑗
2,0.6 = [

0.45 −0.08
−0.08 0.8

] , 𝐼𝑖,𝑗
2,0.8 = [

0.45 −0.05
−0.05 1.09

], 

𝐼𝑖,𝑗
1,1 = [

1.80 0.02
0.02 0.27

] , 𝐼𝑖,𝑗
1,1.25 = [

1.81 0.04
0.04 0.19

],𝐼𝑖,𝑗
1,1.5 = [

1.82 0.05
0.05 0.14

] , 𝐼𝑖,𝑗
1,1.75 = [

1.83 0.05
0.05 0.10

], 

𝐼𝑖,𝑗
1.25,1 = [

1.15 0.02
0.02 0.42

] , 𝐼𝑖,𝑗
1.25,1.25 = [

1.16 0.05
0.05 0.31

],𝐼𝑖,𝑗
1.25,1.5 = [

1.17 0.06
0.06 0.21

] , 𝐼𝑖,𝑗
1.25,1.75 = [

1.17 0.06
0.06 0.15

], 

𝐼𝑖,𝑗
1.5,1 = [

0.80 0.02
0.02 0.61

] , 𝐼𝑖,𝑗
1.5,1.25 = [

0.81 0.06
0.06 0.44

],𝐼𝑖,𝑗
1.5,1.5 = [

0.81 0.06
0.06 0.31

] , 𝐼𝑖,𝑗
1.5,1.75 = [

0.81 0.06
0.06 0.21

]. 

We obtain positive values of 𝐼𝑖,𝑗
𝑐,𝑑 (𝑖, 𝑗 = 1, 2) except for values 𝐼1,2

𝑐,𝑑 = 𝐼2,1
𝑐,𝑑(𝑑 < 1). If 𝑐 = 𝑐𝑜𝑛𝑠𝑡 

and values of 𝑑 increase, then values of 𝐼2,2
𝑐,𝑑(𝑑 ≥ 1) decrease. If 𝑑 = 𝑐𝑜𝑛𝑠𝑡 and values of 𝑐 increase, 

then values of 𝐼1,1
𝑐,𝑑

 decrease, values of 𝐼1,2
𝑐,𝑑 = 𝐼2,1

𝑐,𝑑
 are similar and values of 𝐼2,2

𝑐,𝑑(𝑑 ≥ 1) increase. 

The values of 𝐻𝑖,𝑗
𝑐,𝑑 (𝑖, 𝑗 = 1, 2) for certain parameter values, including those from Figure 1, are: 

𝐻𝑖,𝑗
1,0.2 = [

−0.19 −0.17
−0.17 −0

] ,𝐻𝑖,𝑗
1,0.4 = [

−0.15 −0.13
−0.13 −0

] , 𝐻𝑖,𝑗
1,0.6 = [

−0.14 −0.10
−0.10 −0

],𝐻𝑖,𝑗
1,0.8 = [

−0.14 −0.08
−0.08 −0

], 

𝐻𝑖,𝑗
1.5,0.2 = [

0.13 −0.04
−0.04 0.03

] , 𝐻𝑖,𝑗
1.5,0.4 = [

0.16 −0.05
−0.05 0.02

] , 𝐻𝑖,𝑗
1.5,0.6 = [

0.18 −0.05
−0.05 0.02

],𝐻𝑖,𝑗
1.5,0.8 = [

0.20 −0.05
−0.05 0.02

], 

𝐻𝑖,𝑗
2,0.2 = [

0.16 −0.01
−0.01 0.01

] , 𝐻𝑖,𝑗
2,0.4 = [

0.16 −0.01
−0.01 0.01

] , 𝐻𝑖,𝑗
2,0.6 = [

0.17 −0.02
−0.02 0.01

],𝐻𝑖,𝑗
2,0.8 = [

0.18 −0.02
−0.02 0.01

], 

𝐻𝑖,𝑗
1,1 = [

−0.15 −0.07
−0.07 −0

] , 𝐻𝑖,𝑗
1,1.25 = [

−0.18 −0.05
−0.05 −0

] , 𝐻𝑖,𝑗
1,1.5 = [

−0.2 −0.04
−0.04 −0

],𝐻𝑖,𝑗
1,1.75 = [

−0.24 −0.03
−0.03 −0

], 

𝐻𝑖,𝑗
1.25,1 = [

0.13 −0.07
−0.07 0

] , 𝐻𝑖,𝑗
1.25,1.25 = [

0.14 −0.06
−0.06 0

] , 𝐻𝑖,𝑗
1.25,1.5 = [

0.14 −0.05
−0.05 0

],𝐻𝑖,𝑗
1.25,1.75 = [

0.13 −0.05
−0.05 0

], 

𝐻𝑖,𝑗
1.5,1 = [

0.21 −0.05
−0.05 0.01

] , 𝐻𝑖,𝑗
1.5,1.25 = [

0.23 −0.05
−0.05 0.01

],𝐻𝑖,𝑗
1.5,1.5 = [

0.24 −0.05
−0.05 0.01

] , 𝐻𝑖,𝑗
1.5,1.75 = [

0.25 −0.05
−0.05 0.01

], 

We get 𝐻1,2
𝑐,𝑑 = 𝐻2,1

𝑐,𝑑 < 0. Values of 𝐻2,2
𝑐,𝑑

 are very close to zero, e.g. 𝐻2,2
1,0.2 = −0.0004988119, 

𝐻2,2
1,0.4 = −0.0009952323, 𝐻2,2

1,0.6 = −0.001486889. If 𝑑 = 𝑐𝑜𝑛𝑠𝑡 and values of 𝑐 increase then 

values of 𝐻1,2
𝑐,𝑑(𝑑 < 1) increase, values of 𝐻1,2

𝑐,𝑑 = 𝐻2,1
𝑐,𝑑

 are similar and values of 𝐻1,2
𝑐,𝑑 =

𝐻2,1
𝑐,𝑑(𝑑 < 1) and 𝐻1,1

𝑐,𝑑(𝑑 ≥ 1) increase. 

 

5. Maximum likelihood estimation 

 



   

 

In this section, we present a location-scale SPCN1 distribution characterised by location parameter 

𝜇 ∈ 𝑅 and scale parameter 𝜎 > 0. This distribution is formulated through the 𝑌 = 𝜇 + 𝜎𝑋 

transformation: 

 

𝑓(𝑦; 𝜇, 𝜎, 𝑐, 𝑑) =
2𝑐

𝜎
|
𝑦−𝜇

𝜎
|
𝑐−1

𝜙 (|
𝑦−𝜇

𝜎
|
𝑐

)Φ [𝑠𝑔𝑛 (𝑑
𝑦−𝜇

𝜎
) |𝑑

𝑦−𝜇

𝜎
|
𝑐

]. (17) 

 

Let 𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗ be a random sample of size 𝑛 from the 𝑆𝑃𝐶𝑁1(𝜇, 𝜎, 𝑐, 𝑑). Our target is to 

estimate the unknown 𝜇, 𝜎, 𝑐, 𝑑 parameters. The likelihood function based on (2) is given by 

 

𝐿 =
2𝑐

𝜎
∏ |

𝑦𝑖
∗−𝜇

𝜎
|
𝑐−1

𝜙 (|
𝑦𝑖
∗−𝜇

𝜎
|
𝑐

)Φ [𝑠𝑔𝑛 (𝑑
𝑦𝑖
∗−𝜇

𝜎
) |𝑑

𝑦𝑖
∗−𝜇

𝜎
|
𝑐

]𝑛
𝑖=1 , (18) 

 

then the log-likelihood function 𝑙 = 𝑙𝑛𝐿 is defined as: 

 

𝑙 = 𝑛𝑙𝑛
2𝑐

𝜎
+ (𝑐 − 1)∑ 𝑙𝑛 |

𝑦𝑖
∗−𝜇

𝜎
|𝑛

𝑖=1 + ∑ 𝑙𝑛 [𝜙 (|
𝑦𝑖
∗−𝜇

𝜎
|
𝑐

)]𝑛
𝑖=1 + ∑ 𝑙𝑛 {Φ [𝑠𝑔𝑛 (𝑑

𝑦𝑖
∗−𝜇

𝜎
) |𝑑

𝑦𝑖
∗−𝜇

𝜎
|
𝑐

]}𝑛
𝑖=1 .  (19) 

 

There is no need to present formulas 
𝑑𝑙

𝑑𝜇
,
𝑑𝑙

𝑑𝜎
,
𝑑𝑙

𝑑𝑐
, 
𝑑𝑙

𝑑𝑑
, because they have a complicated form. To 

simplify the process, we can use one of the advanced computational environments with embedded 

optimisation procedures. These include Mathcad, Mathematica, Excel or R. For the purpose of this 

paper, the maximum likelihood estimates (MLEs) of the 𝜇, 𝜎, 𝑐, 𝑑 parameters were calculated in the 

R environment. 

For estimated parameter 𝛩, the bias (BIAS) of estimator 𝛩̂ is defined as 

 

𝐵𝐼𝐴𝑆(𝛩̂) =
1

𝑛
∑ 𝛩̂(𝑦1

∗, 𝑦2
∗, … , 𝑦𝑛

∗) − 𝛩
𝑛

𝑖=1

 

 

and the root mean squared error (RMSE) is given by 

 

𝑅𝑀𝑆𝐸(𝛩̂) = √𝐸 [(𝛩̂ − 𝛩)
2
]. 

 

These characteristics of the MLEs are shown in Tables 3 and 4. The simulation study was 

performed with 103 samples using sample sizes of 25, 50, 100, 200. The samples, as shown in 

Figure 8, were drawn from the 𝑆𝑃𝐶𝑁1(𝑐, 3), 𝑐 = (1, 2, 3) and 𝑆𝑃𝐶𝑁1(2, 𝑑), 𝑑 = (0.5, 1, 2). Our 



   

 

MLE analysis is for a unimodal and slightly bimodal distribution (left) as well as a clearly bimodal 

distribution (right). 

 

Figure 8. PDF curves of the SPCN1 distribution for parameter values used in the MLE 

 
Source: authors’ work. 
 
Table 3. Biases and RMSEs of the MLEs from 𝑆𝑃𝐶𝑁1(0, 1, 𝑐, 3) 

  𝜇̂ 𝜎̂ 𝑐̂ 𝑑̂ 

𝑐 𝑛 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 

1 

25 -0.087 0.028 0.117 0.028 0.202 0.069 0.327 0.125 

50 -0.076 0.019 0.104 0.021 0.154 0.043 0.316 0.119 

100 -0.062 0.011 0.086 0.014 0.105 0.022 0.313 0.116 

200 -0.053 0.007 0.073 0.009 0.079 0.012 0.298 0.108 

2 

25 -0.065 0.019 0.087 0.018 0.265 0.099 0.279 0.100 

50 -0.052 0.011 0.071 0.011 0.218 0.075 0.270 0.096 

100 -0.038 0.006 0.058 0.007 0.173 0.049 0.266 0.092 

200 -0.024 0.002 0.043 0.003 0.124 0.025 0.238 0.078 

3 

25 -0.055 0.011 0.066 0.011 0.280 0.105 0.275 0.097 

50 -0.045 0.007 0.058 0.007 0.262 0.095 0.272 0.095 

100 -0.036 0.004 0.048 0.005 0.222 0.071 0.262 0.090 

200 -0.030 0.002 0.041 0.003 0.194 0.055 0.243 0.080 
Source: authors’ work. 
 
Table 4. Biases and RMSEs of the MLEs from 𝑆𝑃𝐶𝑁1(0, 1, 2, 𝑑) 

  𝜇̂ 𝜎̂ 𝑐̂ 𝑑̂ 

𝑑 𝑛 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 

0.5 

25 -0.023 0.008 0.048 0.005 0.226 0.076 0.172 0.051 

50 -0.017 0.005 0.043 0.003 0.188 0.056 0.143 0.034 

100 -0.013 0.002 0.035 0.002 0.158 0.039 0.121 0.023 

200 -0.007 0.001 0.033 0.002 0.139 0.030 0.101 0.016 

1 

25 -0.043 0.011 0.068 0.010 0.211 0.070 0.182 0.055 

50 -0.032 0.006 0.058 0.006 0.182 0.053 0.150 0.039 

100 -0.020 0.003 0.047 0.004 0.140 0.033 0.115 0.023 

200 -0.016 0.002 0.041 0.002 0.121 0.024 0.098 0.015 

2 

25 -0.050 0.012 0.076 0.013 0.242 0.086 0.263 0.096 

50 -0.040 0.007 0.064 0.008 0.206 0.066 0.243 0.084 

100 -0.031 0.004 0.053 0.005 0.162 0.044 0.212 0.068 

200 -0.023 0.002 0.045 0.003 0.127 0.027 0.187 0.052 
Source: authors’ work. 
 



   

 

Tables 3 and 4 summarise the simulation results for the bias and RMSE of the MLEs under 

different sample sizes and parameter settings. As observed, the estimates converge to the true 

parameter values as sample size 𝑛 increases, which confirms the consistency of the proposed 

estimators. 

In both tables, the bias of location parameter 𝜇̂ is slightly negative for all cases, indicating a small 

systematic underestimation. The lowest bias is obtained for the location parameter, suggesting that 

it is estimated most accurately among all parameters. For all parameters, both bias and RMSE 

decrease as the sample size increases. 

The estimates of 𝑑̂ are generally more variable but exhibit the same pattern of convergence as 𝑛 

increases. 

A comparison between Tables 3 and 4 reveals that a higher 𝑑 slightly increases the bias of 𝑑̂. 

Overall, the simulation confirms that the maximum likelihood estimators of the SPCN1 parameters 

are consistent and perform well even for small sample sizes. 

 

6. Application 

 

6.1. Goodness-of-fit tests 

 

Sulewski and Stoltmann (2023) divided alternatives into nine groups according to their skewness 

(𝛾1) and excess kurtosis (𝛾̅2) signs. Groups O-H are defined in Table 5. Our proposal belongs to all 

analysed groups except group C. 

Table 6 presents parameter vectors 𝜃 =  (0, 𝜎, 𝑐, 𝑑) together with the corresponding values of the 

mean (𝜇ₐ), standard deviation (𝜎ₐ), skewness (𝛾₁), excess kurtosis (𝛾̅₂) and similarity measure 

𝑀(𝜃;  𝜇, 𝜎) for selected configurations. As similarity measure 𝑀 increases from 0.5 to 0.9, the 

parameters (𝜎, 𝑐, 𝑑) change smoothly, leading to different distributional shapes. The SPCN 

distribution is capable of producing light- and heavy-tailed, symmetric and asymmetric, as well as 

both unimodal and bimodal forms. Figure 9 illustrates these shapes graphically. The transition 

between the groups demonstrates that the SPCN family provides a coherent parametric framework 

for controlling skewness and kurtosis independently, while maintaining analytical tractability. 

These results confirm that SPCN is a highly flexible model encompassing empirical data patterns 

encountered in practice. We observe both unimodal and bimodal shapes. 

 

Table 5. Groups of alternatives with signs of 𝛾1 and 𝛾̅2 
Group 𝛾1 𝛾̅2 
O zero zero 

A positive positive 

B negative positive 



   

 
C zero positive 

D zero negative 

E positive negative 

F negative negative 

G positive zero 

H negative zero 
Source: authors’ work. 
 
Table 6. Vectors of SPCN parameter 𝜽, mean μ, standard deviation σ, skewness 𝛾1, excess kurtosis 𝛾̅2 and 
similarity measure M. Groups O-B, D-H 

Group 𝛉 = (0, 𝜎, 𝑐, 𝑑) μ σ 𝛾1, 𝛾̅2 𝑀(𝛉; 𝜇, 𝜎) 

O 0,1,1,0 0 1 0 0 𝑀(𝛉; 0,1) = 1 

A 

0,0.96,2.682, -1.141 -0.578 0.634 1.158 0.071 𝑀(𝛉; 0,1) = 0.5 

0,1.001,1,1 0.565 0.827 0.137 0.062 𝑀(𝛉; 0,1) = 0.75 

0,0.855,1,0.445 0.277 0.809 0.017 0.004 𝑀(𝛉; 0,1) = 0.85 

0,1.005,0.999,0.325 0.248 0.975 0.008 0.005 𝑀(𝛉; 0,1) = 0.9 

B 

0,1.164,2.71,1.144 0.704 0.766 -1.172 0.1 𝑀(𝛉; 0,1) = 0.5 

0,1.102,1.012, -0.975 -0.612 0.911 -0.107 0.023 𝑀(𝛉; 0,1) = 0.75 

0,1.322,1, -0.277 -0.282 1.292 -0.005 0.001 𝑀(𝛉; 0,1) = 0.85 

0,1.202,1, -0.181 -0.171 1.189 -0.001 0.001 𝑀(𝛉; 0,1) = 0.9 

D 

0,2.94,1.101,0 0 2.849 0 -0.343 𝑀(𝛉; 0,1) = 0.5 

0,1.061,1.069, -0.952 -0.573 0.865 0 -0.126 𝑀(𝛉; 0,1) = 0.75 

0,1.325,1.006, -0.267 -0.27 1.294 0 -0.023 𝑀(𝛉; 0,1) = 0.85 

0,0.817,1.038,0 0 0.806 0 -0.141 𝑀(𝛉; 0,1) = 0.9 

E 

0,0.948,1.372,4.472 0.746 0.458 0.328 -0.1 𝑀(𝛉; 0,1) = 0.5 

0,1.123,1.77, -0.351 -0.122 1.001 0.13 -1.272 𝑀(𝛉; 0,1) = 0.75 

0,1.099,1.373, -0.32 -0.164 1.001 0.117 -0.874 𝑀(𝛉; 0,1) = 0.85 

0,1.156,1.126, -0.246 -0.179 1.099 0.05 -0.402 𝑀(𝛉; 0,1) = 0.9 

F 

0,2.21,1.741,0.314 0.204 1.976 -0.108 -1.26 𝑀(𝛉; 0,1) = 0.5 

0,1.546,1.237,0.413 0.368 1.408 -0.13 -0.621 𝑀(𝛉; 0,1) = 0.75 

0,1.236,1.181,0.378 0.284 1.141 -0.1 -0.514 𝑀(𝛉; 0,1) = 0.85 

0,0.981,1.023,0.33 0.238 0.944 -0.01 -0.082 𝑀(𝛉; 0,1) = 0.9 

G 

0,3.028,1.012,0.833 1.539 2.593 0.07 0 𝑀(𝛉; 0,1) = 0.5 

0,1.189,1.017,0.93 0.643 0.992 0.085 0 𝑀(𝛉; 0,1) = 0.75 

0,1.238,1.001,0.409 0.374 1.18 0.013 0 𝑀(𝛉; 0,1) = 0.85 

0,0.902,1,0.291 0.201 0.879 0.005 0 𝑀(𝛉; 0,1) = 0.9 

H 

0,1.293,1.487,2.851 0.997 0.631 -0.055 0 𝑀(𝛉; 0,1) = 0.5 

0,0.602,1, -0.213 -0.1 0.594 -0.002 0 𝑀(𝛉; 0,1) = 0.75 

0,1.338,1, -0.229 -0.238 1.317 -0.002 0 𝑀(𝛉; 0,1) = 0.85 

0,1.206,1, -0.168 -0.159 1.196 -0.001 0 𝑀(𝛉; 0,1) = 0.9 
Source: authors’ work. 
 
Figure 9. PDF curves of the SPCN1 distribution for parameter values presented in Table 6 



   

 

 
Source: authors’ work. 

 
6.2. Real data example 

 

In this Section, we present two real data examples to demonstrate the flexibility and applicability of 

the SPCN1 distribution. A total of ten distributions were involved in Monte Carlo simulations. 

The models selected for comparison with the SPCN1 are: ESGN3, SGN, GMNSN, FGSN3, SN1, 

FSCN, BABSN, FASN, SBNN, and SSGN. The PDFs of the used models are shown in Appendix 

1. 

The estimation of the model parameters is carried out using the maximum likelihood method. To 

avoid local maxima of the logarithmic likelihood function, the optimisation process is run 100 times 



   

 

with several different initial values widely scattered in the parameter space. AIC, BIC and HQIC 

were used for model comparisons. Let us recall that 

 

𝐴𝐼𝐶 = −2𝑙 + 2𝑝, 𝐵𝐼𝐶 = −2𝑙 + 𝑝𝑙𝑛(𝑛),𝐻𝑄𝐼𝐶 = −2𝑙 + 2𝑝𝑙𝑛(𝑙𝑛(𝑛)), (20) 

 

where 𝑙 is the log-likelihood function, 𝑛 is the sample size and 𝑝 is the number of model parameters. 

Tables 7–8 display the values of the MLEs, the information criteria (AIC, BIC and HQIC) for the 

analysed models. The lowest values of the information criteria are marked in bold, indicating the 

best-fitting model according to that criterion. It can be observed that different models perform better 

depending on the dataset, highlighting the flexibility and suitability of certain distributions for 

capturing the characteristics of the data, but the SPCN1 model achieves the best results. Plots of the 

estimated PDF of the analysed models are given in Figures 10 and 11. Overall, these results allow 

for a comprehensive assessment of model adequacy and can guide the selection of the most 

appropriate distribution for further statistical analysis. 

Example 1. The first dataset contains data on arrests per 100,000 residents for assault in each of 

the 50 US states in 1973 (𝑛 = 50) (see R codes USArrests[2]). The descriptive statistics are: 𝜇𝑎 ≈

170.76, 𝜎𝑎 ≈ 83.338, 𝛾1 ≈ 0.227, 𝛾̅2 ≈ 1.931. 

 
Table 7. MLEs, AIC, BIC and HQIC (first dataset) 

Model 
Estimated parameters of the given model 

AIC BIC HQIC 
𝑎̂ 𝑏̂ 𝑐̂ 𝑑̂ 𝑒̂ 

SPCN1 170.885 73.377 1.204 0.077  590.689 598.337 593.601 
ESGN3 172.436 70.182 38.819 -6.098 56.707 606.892 616.452 610.532 
SGN 171.026 80.465 2.235 96.356  594.334 601.982 597.246 
GMNSN 165.992 67.932 -0.498 39.027  598.795 606.443 601.707 
FGSN3 173.533 77.009 -1.708 0.876  603.324 610.972 606.236 
SN1 171.515 82.248 41.258 -11.863  591.205 598.853 594.118 
FSCN 173.546 46.995 -1.338 -47.931  608.326 615.974 611.239 
BABSN 171.948 81.713 69.507 5.661  591.194 598.842 594.106 
FASN 174.431 51.598 6.471 0.384  608.138 615.786 611.051 
SBNN 169.436 50.301 -37.110    621.637 627.373 623.821 
SSGN 168.524 83.882 46.199 0.429 62.820 596.266 605.826 599.906 

Source: authors’ work. 
 
Figure 10 Estimated PDF of the analysed distributions, first dataset 



   

 

 
Source: authors’ work. 
 

Example 2. The second set of data are measurements in centimetres of the variable sepal width 

for 50 flowers from each of the 3 species of iris (𝑛 = 150). The species are Iris setosa, versicolor, 

and virginica (see R codes iris[2]). The descriptive statistics are: 𝜇𝑎 ≈ 3.057, 𝜎𝑎 ≈ 0.436, 𝛾1 ≈

0.316, 𝛾̅2 ≈ 3.181. 

 

Table 8. MLEs, AIC, BIC and HQIC (second dataset) 

Model 
Estimated parameters 

AIC BIC HQIC 
𝑎̂ 𝑏̂ 𝑐̂ 𝑑̂ 𝑒̂ 

SPCN1 -0.606 3.971 5.979 16.328  223.498 235.541 228.391 
ESGN3 2.026 1.346 52.699 86.264 88.325 281.479 296.533 287.595 
SGN 1.814 1.817 66.218 92.863  333.708 345.750 338.600 
GMNSN 1.965 1.201 -71.349 98.800  269.996 282.039 274.889 
FGSN3 4.212 1.314 3.213 -37.129  308.097 320.139 312.989 
SN1 3.273 0.977 98.154 -26.668  313.642 325.684 318.534 
FSCN 2.048 2.904 3.854 58.423  383.613 395.655 388.505 
BABSN 2.962 0.891 48.565 27.686 139.243 286.486 301.540 292.602 
FASN 2.241 1.207 93.347 30.114  419.210 431.253 424.103 
SBNN 1.436 1.317 -23.335    298.112 307.144 301.781 
SSGN 2.638 0.660 0.339 0.747 62.115 273.228 288.281 279.343 

Source: authors’ work. 
 
Figure 11 Estimated PDF of the analysed distributions, second dataset 

 
Source: authors’ work. 

 
 
 



   

 

7. Conclusions 

 

In this paper, we propose bimodal distributions that can be used as an alternative to the other bimodal 

distributions in modelling bimodal-distributed data, including compound normal and Laplace 

distributions. The characterisation of the skew plasticising component normal I distribution is 

investigated. Simulation examples showed that such estimation procedures performed well. Our 

proposal is a very interesting alternative distribution for goodness-of-fit tests. Real data examples 

demonstrate that the skew plasticising component normal I distribution is a flexible, parsimonious, 

and competitive model that deserves to be added to the existing distributions in modelling unimodal- 

(see example II) and bimodal-distributed data (see example I). 
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Appendix 1 

 

Table A1. PDFs of distributions from Groups 3–7 

Group 
no. 

PDFs 

3 𝑓𝑇𝑃𝑆𝑁(𝑥; 𝛼) =
2𝜋

𝜋+2𝑡𝑎𝑛−1(𝛼)
𝜙(𝑥)Φ(𝛼|𝑥|) (𝛼 ∈ 𝑅). 

3 𝑓𝐺𝑆𝑁1(𝑥; 𝛼, δ) = {
2𝜙 (

𝑥

1+δ
) [

δ

1+δ
+

1−δ

1+δ
Φ(

𝛼𝑥

1+δ
)]  𝑥 < 0

2𝜙 (
𝑥

1−δ
)Φ(

𝛼𝑥

1−δ
)  𝑥 ≥ 0

 (𝛼 ∈ 𝑅, δ ∈ [0, 1)), 

3 𝑓𝐸𝐸𝑆𝑁(𝑥; 𝛼, δ) = {
2 [

δ

1+δ
+

1−δ

1+δ
𝛷 (

𝛼𝑥

1+δ
)]𝜙 (

𝑥

1+δ
) , 𝑥 < 0

2𝛷 (
𝛼𝑥

1−δ
)𝜙 (

𝑥

1−δ
) , 𝑥 ≥ 0

 (𝛼 ∈ R, δ ∈ [0, 1)), 

3 𝑓𝐸𝑆𝑁(𝑥; ε) = 𝜙 (
𝑥

1+ε
) 𝐼(𝑥 < 0) + 𝜙 (

𝑥

1−ε
) 𝐼(𝑥 ≥ 0) (|ε| < 1), 

3 𝑓𝐹𝐸𝑆𝑁(𝑥; 𝛼, ε) =
1

2−2Φ(𝛿)
{
𝜙 (

𝑥

1+ε
− 𝛼)  𝑥 < 0

𝜙 (
𝑥

1−ε
+ 𝛼)  𝑥 ≥ 0

(𝛼 ∈ R, |ε| < 1), 

3 𝑓𝑆𝑇𝑃𝑆𝑁(𝑥; 𝛼, β) =
4𝜋

𝜋+2𝑡𝑎𝑛−1(β)
𝜙(𝑥)Φ(α𝑥)Φ(β|𝑥|) (𝛼, β ∈ 𝑅), 

3 

𝑓𝐺𝑇𝑃𝑆𝑁(𝑥; 𝛼, β, ε) =
2𝜋𝜙(𝑥)Φ2(α|𝑥|,β|𝑥|;𝜀)

𝑐𝑜𝑠−1(
−𝜀−𝛼β

√1+𝛼2√1+𝛽2
)+𝑡𝑎𝑛−1(α)+𝑡𝑎𝑛−1(β)

(𝛼, β ∈ 𝑅, |ε| < 1), 

where Φ2(α|𝑥|, β|𝑥|; 𝜀) denotes the CDF of 𝑁2(0,0,1,1, ε), 

3 

𝑓𝐺𝑆𝑇𝑃𝑆𝑁(𝑥; 𝛼, β, ε) = 𝑐(𝛼, β, 𝜌)𝜙(𝑥)Φ2(α𝑥, β|𝑥|; ε) (𝛼, β ∈ 𝑅, |ε| < 1), 
where Φ2(𝜆1𝑥, 𝜆2|𝑥|; ε) denotes the CDF of 𝑁2(0,0,1,1, 𝜌) and 

𝑐(𝜆1, 𝜆2, ε) =
4𝜋

𝑐𝑜𝑠−1(
−𝜀−𝛼β

√1+𝛼2√1+𝛽2
)+𝑐𝑜𝑠−1(

−𝜀+𝛼β

√1+𝛼2√1+𝛽2
)+2𝑡𝑎𝑛−1(β)

, 

3 𝑓𝐺𝑇𝑃𝑆𝑁(𝑥; 𝛼, ε) =
2𝜋𝜙(𝑥)

𝜋+𝑡𝑎𝑛−1(𝛼)+𝑡𝑎𝑛−1(𝛼ε)
{
Φ(𝛼𝑥) 𝑥 < 0

Φ(𝛼ε𝑥) 𝑥 ≥ 0
 (𝛼 ∈ 𝑅, |ε| < 1), 

3 𝑓𝑇𝑃𝑃𝑁(𝑥, 𝜎1, 𝜎2, 𝑐) =

{
 
 

 
 

𝑐

𝜎1√2𝜋
⋅ (

−𝑥

𝜎1
)
𝑐−1

𝑒𝑥𝑝 [−
1

2
(
−𝑥

𝜎1
)
2𝑐

]  𝑥 < 0

0 𝑥 = 0
𝑐

𝜎2√2𝜋
⋅ (

𝑥

𝜎2
)
𝑐−1

𝑒𝑥𝑝 [−
1

2
(
𝑥

𝜎2
)
2𝑐

]  𝑥 > 0

 (𝜎1, 𝜎2 > 0, 𝑐 ≥ 1). 

4 𝑓𝐵𝑁(𝑥; 𝜆) = (
1+α𝜆

1+𝜆
)𝜙(𝑥) (𝜆 ≥ 0), 

4 𝑓𝐴𝑆𝑁(𝑥; 𝛼) =
(1−αx)2+1

2+𝛼2
𝜙(𝑥) (α ∈ R), 

4 𝑓𝐷𝑁(𝑥; γ) =
√𝜋|𝑥|γ

Γ(γ+0.5)2γ
𝜙(𝑥) (γ ≥ 0), 

4 𝑓𝐺𝐴𝑆𝑁(𝑥; 𝛼, 𝑛) =
(1−αx)2𝑛+1

2+∑ (2𝑛2𝑖 )𝛼
2𝑖∏ (2𝑗−1)𝑖

𝑗=1
𝑛
𝑖=1

𝜙(𝑥) (α ∈ R, n ∈ N − {0}), 

4 𝑓𝐵𝐴𝑆𝑁(𝑥; 𝛼) =
[(1−𝛼𝑥)2+1]

2

3𝛼4+8𝛼2+4
𝜙(𝑥) (α ∈ R), 

4 𝑓𝑇𝑁(𝑥; γ) = exp(−0.5γ
2)𝑐𝑜𝑠ℎ(γx)𝜙(𝑥) (γ > 0), 

4 𝑓𝐴𝐵𝑆𝑁(𝑥; 𝛼, 𝛽) =
(1−𝛼𝑥−𝛽𝑥3)

2
+1

𝛼2+15𝛽2+6𝛼𝛽+2
𝜙(𝑥) (α, β ∈ R), 

4 
𝑓𝐵𝐴𝐵𝑆𝑁(𝑥; 𝛼, 𝛽) =

[(1−𝛼𝑥−𝛽𝑥3)
2
+1]

2

𝑐(𝛼,𝛽)
𝜙(𝑥) (α, β ∈ R), 

where 

𝑐(𝛼, 𝛽) = 3𝛼4 + 8𝛼2 + 4 + 60𝛼3𝛽 + 12𝛼𝛽(4 + 315𝛽2) + 630𝛼2𝛽2 + 15𝛽2(8 + 693𝛽2). 

4 𝑓𝐹𝐴𝑁(𝑥; γ) =
2+0.5γ[(𝑥2−1)

2
+2]

1+γ
𝜙(𝑥) (γ ≥ 0). 
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5 𝑓𝐺𝑁(𝑥; γ) =
1

2γ1/γΓ(1/γ)
𝑒𝑥𝑝 (−

|𝑥|γ

γ
) (γ > 0), 

5 𝑓𝐵𝐺𝑁(𝑥; γ) =
γ(γ−3)/γ

2Γ(3/γ)
𝑥2𝑒𝑥𝑝 (−

|𝑥|γ

γ
) (γ > 0), 

5 𝑓𝐴𝑆𝐺𝑁(𝑥; γ, ω) =
γ1−1/γ[(1−ω𝑥)2+1]

2[ω2γ2/γΓ(3/γ)+2Γ(1/γ)]
𝑒𝑥𝑝 (−

|𝑥|γ

γ
) (γ, 𝜔 > 0). 

6 𝑓𝑃𝑁(𝑥; 𝛼) = 𝛼𝜙(𝑥)[Φ(𝑥)]
𝛼−1(𝛼 > 0), 

6 𝑓𝐺𝑃𝑁(𝑥; 𝛼, 𝜆) = k(𝛼, 𝜆)𝜙(𝑥)[Φ(𝜆𝑥)]
𝛼−1 (𝛼 > 0, 𝜆 ∈ 𝑅), 

7 
𝑓𝑃𝑆𝐴𝑁(𝑥; 𝛼, 𝜆) = 𝛼𝜙𝜆(𝑥)[Φ𝜆(𝑥)]

𝛼−1(𝛼 > 0, 𝜆 ∈ 𝑅), 

where 𝜙𝜆(𝑥) = 2𝜙(𝑥)Φ(𝑥) and Φ𝜆(𝑥) = ∫ 𝜙𝜆(𝑡)𝑑𝑡
𝑥

−∞
, 

7 𝑓𝑆𝑁1(𝑥; λ0, λ1) = Φ(
λ0

√1+λ1
2
)

−1

𝜙(𝑥)Φ(λ0 + λ1𝑥)(λ0, λ1 ∈ 𝑅), 

7 𝑓𝑆𝐶𝑁(𝑥; λ) = 2𝜙(𝑥)Φ(
λ𝑥

√1+λ2𝑥2
) (λ ∈ 𝑅), 

7 𝑓𝑆𝐺𝑁(𝑥; 𝜆1, 𝜆2) = 2𝜙(𝑥)Φ(
𝜆1𝑥

√1+𝜆2𝑥
2
) (𝜆1 ∈ 𝑅, 𝜆2 ≥ 0), 

7 𝑓𝐹𝐺𝑆𝑁3(𝑥; 𝜆1, 𝜆2) = 2𝜙(𝑥)Φ(𝜆1𝑥 + 𝜆2𝑥
3) (𝜆1, 𝜆2 ∈ 𝑅), 

7 

𝑓𝐵𝑆𝑁(𝑥; λ, n) =
𝜙(x)Φ(λx)𝑛

𝑏𝑛(λ)
 (λ ∈ 𝑅, 𝑛 ≥ 1), 

where 𝑏𝑛(λ) = 𝐸[Φ(λU)
𝑛], 𝑈~𝑁(0,1). For 𝑛 = 1,2,3 we have closed form for 𝑏𝑛(λ), i.e.  

𝑏1(λ) =
1

2
, 𝑏2(λ) =

1

4
+

1

2𝜋
𝑠𝑖𝑛−1 (

λ2

1+λ2
) , 𝑏3(λ) =

1

8
+

3

4𝜋
𝑠𝑖𝑛−1 (

λ2

1+λ2
). 

7 

𝑓𝐺𝑆𝑁2(𝑥; 𝜆1, 𝜆2, 𝜌) =
2𝜋𝜙(𝑥)Φ2(𝜆1𝑥,𝜆2𝑥;𝜌)

𝑐𝑜𝑠−1(
−𝜌−𝜆1𝜆2

√1+𝜆1
2√1+𝜆2

2
)

, 𝜆1, 𝜆2 ∈ 𝑅, |𝜌| < 1, 

where Φ2(𝜆1𝑥, 𝜆2𝑥; 𝜌) denotes the CDF of 𝑁2(0,0,1,1, 𝜌), 

7 
𝑓𝑇𝑃𝐵𝑆𝑁(𝑥; 𝜆1, 𝜆2) =

1

𝑐𝑛,𝑚(𝜆1,𝜆2)
𝜙(𝑥)[Φ(𝜆1𝑥)]

𝑛[Φ(𝜆2𝑥)]
𝑚 (𝜆1, 𝜆2 ∈ 𝑅), 

where 𝑐𝑛,𝑚(𝜆1, 𝜆2) = 𝐸{[Φ(𝜆1𝑈)]
𝑛[Φ(𝜆2𝑈)]

𝑚}, 𝑈~𝑁(0,1), 

7 
𝑓𝐺𝑆𝑁(𝑥; 𝜆1, 𝜆2, 𝜌) =

2𝜋𝜙(𝑥)Φ2(𝜆1𝑥,𝜆2𝑥;𝜌)

𝑐𝑜𝑠−1(
−𝜌−𝜆1𝜆2

√1+𝜆1
2√1+𝜆2

2
)

 (𝜆1, 𝜆2 ∈ 𝑅, |𝜌| < 1), 

7 𝑓𝑆𝐵𝑁(𝑥; 𝛼, λ) = 2 (
1+αx2

1+𝛼
)𝜙(𝑥)Φ(λx) (α ≥ 0, λ ∈ R), 

7 𝑓𝑆𝐹𝑁(𝑥; θ, λ) =
𝜙(|𝑥|+θ)Φ(λx)

1−Φ(θ)
 (θ, λ ∈ 𝑅), 

7 𝑓𝐸𝑆𝐺𝑁1(𝑥; 𝜆1, 𝜆2, 𝜆3) = 2𝜙(𝑥)Φ (
𝜆1𝑥

√𝜆2𝑥
2+𝜆3𝑥

4
) (𝜆1 ∈ 𝑅, 𝜆2, 𝜆3 > 0), 

7 𝑓𝐸𝑆𝐺𝑁2(𝑥; 𝜆1, 𝜆2, 𝜆3) = 2𝜙(𝑥)𝛷 (
𝜆1𝑥

√1+𝜆2𝑥
2+𝜆3𝑥

4
) (𝜆1 ∈ 𝑅, 𝜆2, 𝜆3 > 0), 

7 𝑓𝐺𝑀𝑁𝑆𝑁(𝑥; α, λ) =
2

α+2
𝜙(𝑥)[1 + αΦ(λx)] (α > −2, λ ∈ 𝑅), 

7 
𝑓𝑁𝑆𝑁(𝑥; α, β) = [

1

2
−

1

𝜋
𝑡𝑎𝑛−1 (

𝛽

√1+𝛼2(1+𝛽2)
)]
−1

𝜙(𝑥)Φ𝛽(α𝑥)(α, β ∈ 𝑅), 

where Φ𝛽(α𝑥) = 2∫ 𝜙(𝑦)(β𝑦)𝑑𝑦
𝛼𝑥

−∞
, 

7 𝑓𝐹𝑆𝐺𝑁(𝑥; θ, 𝜆1, 𝜆2) =
𝜙(|𝑥|+θ)

1−Φ(θ)
Φ(

𝜆1𝑥

√1+𝜆2𝑥
2
) (θ, 𝜆1 ∈ 𝑅, 𝜆2 > 0), 

7 𝑓𝐹𝑆𝐶𝑁(𝑥; λ, 𝜆1) =
𝜙(|𝑥|+λ)

1−Φ(λ)
Φ(

𝜆1𝑥

√1+𝜆1
2𝑥2
) (λ, 𝜆1 ∈ 𝑅), 

7 𝑓𝐸𝑆𝐺𝑁3(𝑥; α, 𝜆1, 𝜆2) =
2

𝛼+2
𝜙(𝑥) [1 + 𝛼Φ(

𝜆1𝑥

√1+𝜆2𝑥
2
)] (α ≥ 1, 𝜆1 ∈ 𝑅, 𝜆2 ≥ 0), 

7 𝑓𝑆𝑆𝐺𝑁(𝑥; α, 𝜆1, 𝜆2) = 2𝜙(𝑥)Φ(
𝜆1𝑥

√1+𝜆2|𝑥|
2𝛼
) (α ≠ 0, 𝜆1 ∈ 𝑅, 𝜆2 > 0), 

7 𝑓𝑆𝐵𝑁𝑁(𝑥; λ) = 2𝑥
2𝜙(𝑥)Φ(λ𝑥), λ ∈ 𝑅, 

7 𝑓𝐵𝐴𝐵𝑆𝑁(𝑥; 𝛼, 𝛽) = 𝜙(𝑥)
Φ(𝛽√𝛼2+1+𝛼𝑥)

Φ(𝛽)
(α, β ∈ R), 

7 
𝑓𝐺𝐴𝐵𝑆𝑁(𝑥; α, β, λ) =

(1−αx−βx3)
2
+1

𝑐(α,β,λ)
𝜙(𝑥)Φ(λ𝑥) (α, β, λ ∈ R), 

where 𝑐(α, β, λ) = 1 + 3𝛼𝛽 − 𝛼√
2

𝜋

λ

√1+λ2
− 𝛽√

2

𝜋

λ(3+2λ2)

(1+λ2)1.5
+

𝛼2

2
+

15𝛽2

2
, 

7 𝑓𝐹𝐴𝑆𝑁(𝑥; α, λ) =
2+0.5α[(𝑥2−1)

2
+2]

1+𝛼
𝜙(𝑥)Φ(λ𝑥) (𝛼 ≥ 0, λ ∈ R). 



   

 
Note: Functions 𝜙(𝑥) and Φ(𝑥) are the PDF and CDF of the 𝑁(0,1), respectively. 
Source: authors’ work. 

 
Appendix 2 

 

The following code contains R codes for the PDF, CDF, quantile, mode, k-th order moment, 

skewness, kurtosis, pdf of order statistics, moments of order statistics and pseudo-random number 

generator which is also available at github.com/PiotrSule/SPCN1. 

library(RelDists) 
library(zipfR) 
library(pracma) 
library(flexsurv) 
library(xlsx) 
library(ggamma) 
library(gsl) 
library(PSDistr) 
library(Deriv)  
library(splines) 
 

#normalization condition 
norm_cond<-function(c,d) { 
 esgn1 <- function(x) dSPCN1(x,c,d) 
 return (as.numeric(integrate(Vectorize(esgn1), lower = -Inf, upper = Inf)[1]))} 
 
#CDF 
library(PSDistr) 
dSPCN1 <- function(x,c,d){ 
 return(2*dpc(x,0,1,c)*ppc(x*d,0,1,c)) 
} 
 
#PDF 
pSPCN1 <- function(x,c,d){ 
 return(integral(function(x) dSPCN1(x,c,d), -100, x, reltol = 1e-12, method = 
"Simpson")) 
} 
 
#quantile  
qSPCN1=function(p,c,d){ 
 u11 = function(x,c,d) pSPCN1(x,c,d)-p 
 return(uniroot(u11, c(-5,5), tol = 0.0000000001, f.lower = -5, c=c, d=d)$root) 
} 
 
#generator 
rSPCN1 =function(n,c,d) { 
 x=numeric(n) 
 for (i in 1:n) x[i]=qSPCN1(runif(1,0,1),c,d) 
 return(sort(x)) 
} 
 
#ordinary moments 
mSPCN1=function(k,c,d) { 
 return(integral(function(x) x^k*dSPCN1(x,c,d), -Inf, Inf, reltol = 1e-12, method = 
"Simpson")) 
} 
 
#skewness 
g1SPCN1=function(c,d){ 
 w1=mSPCN1(3,c,d)-3*mSPCN1(1,c,d)*mSPCN1(2,c,d)+2*mSPCN1(1,c,d)^3 



   

 
 w2=mSPCN1(2,c,d)-mSPCN1(1,c,d)^2 
 return(w1/w2^(1.5)) 
} 
 
#kurtosis 
g2SPCN1=function(c,d){ 
 w1=mSPCN1(4,c,d)-4*mSPCN1(1,c,d)*mSPCN1(3,c,d)+6*mSPCN1(1,c,d)^2* 
 mSPCN1(2,c,d)-3*mSPCN1(1,c,d)^4 
 w2=mSPCN1(2,c,d)-mSPCN1(1,c,d)^2 
 return(w1/w2^2) 
} 
 
# PDF of order statistics 
 dOSSPCN1=function(x,i,n,c,d) { 
 return(fact(n)/fact(i-1)/fact(n-i)*dSPCN1(x,c,d)*pSPCN1(x,c,d)^(i-1) 
 *(1-pSPCN1(x,c,d))^(n-i)) 
 } 
# moments of order statistics 
mOSSPCN1=function(k,i,n,c,d) { 
 return(integral(function(x) x^k*dOSSPCN1(x,i,n,c,d), -Inf, Inf, reltol = 1e-12, method 
= "Simpson")) 
} 
 
# Shannon entropy 
sSPCN1=function(c,d){ 
 return(integral(function(x) -dSPCN1(x,c,d)*log(dSPCN1(x,c,d)), -Inf, Inf, reltol = 1e-
12, method = "Simpson")) 
} 
 
I11 <- function(x, c, d){ 
 eval(Deriv(Deriv(expression(n*log(2*c)+(c-
1)*log(abs(x))+log(dnorm(abs(x)^c,0,1))+log(porm(sign(d*x),0,1)*abs(x*d)^c)),'c'),'d')
) 
} 
I12 <- function(x, c, d){ 
 eval(Deriv(Deriv(expression(n*log(2*c)+(c-
1)*log(abs(x))+log(dnorm(abs(x)^c,0,1))+log(porm(sign(d*x),0,1)*abs(x*d)^c)),'c'),'d')
) 
} 
I21 <- function(x, c, d) return(I12(x,c,d)) 
I22 <- function(x, c, d){ 
 eval(Deriv(Deriv(expression(n*log(2*c)+(c-
1)*log(abs(x))+log(dnorm(abs(x)^c,0,1))+log(porm(sign(d*x),0,1)*abs(x*d)^c)),'d'),'d')
) 
} 
 
# Fisher Information Matrix 
fimSPCN1=function(c,d,xg){ 
 FIM=numeric(4) 
 FIM[1]=-integral(function(x) I11(x,c,d)*dSPCN1(x,c,d), -xg, xg, reltol = 1e-9, method 
= "Kronrod") 
 FIM[2]=-integral(function(x) I12(x,c,d)*dSPCN1(x,c,d), -xg, xg, reltol = 1e-9, method 
= "Kronrod") 
 FIM[3]=FIM[2] 
 FIM[4]=-integral(function(x) I22(x,c,d)*dSPCN1(x,c,d), -xg, xg, reltol = 1e-9, method 
= "Kronrod") 
 return(FIM) 
} 
 
#Hessian Matrix 
hmSPCN1=function(c,d){ 
 HM=numeric(4) 
 HM[1]=eval(Deriv(Deriv(expression(2*c*abs(x)^(c-1)* 



   

 
 dnorm(abs(x)^c,0,1)*pnorm(sign(d*x)*abs(x*d)^c,0,1)),'c'),'c')) 
 HM[2]=eval(Deriv(Deriv(expression(2*c*abs(x)^(c-1)* 
 dnorm(abs(x)^c,0,1)*pnorm(sign(d*x)*abs(x*d)^c,0,1)),'c'),'d')) 
 HM[3]=HM[2] 
 HM[4]=eval(Deriv(Deriv(expression(2*c*abs(x)^(c-1)* 
 dnorm(abs(x)^c,0,1)*pnorm(sign(d*x)*abs(x*d)^c,0,1)),'d'),'d'))  
 return(HM) 
} 
 


